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Abstract

A self-adapting vibration control system is developed for damping augmentation in smart composite beams. The
conventional vibration control approaches are limited by the requirement of an explicit and often accurate identifi-
cation of the system dynamics and subsequent offline design of an optimal controller. In the present study a self-
adapting vibration control system is developed. A hybrid system comprised of a dynamic diagonal recurrent neural
network (DRNN) and an adaptable feed forward neural network is used to control the beam vibrations. Sensing and
actuation are achieved using piezoelectric sensors and actuators. A finite element model based on a higher-order shear
deformation theory is used to simulate the vibration response of laminated composite beams with integrated piezo-
electric sensors and actuators. The dynamic effects of mass and stiffness of the piezoelectric patches are considered in the
model. The performance of the DRNN controller is verified for arbitrary initial conditions and loadings. A robustness
study including the effects of tip mass, structural parameter variation and partial loss of sensor output is performed. The
performance with partial failure of control actuation is also examined. It is seen that the robustness and control ca-
pabilities of the hybrid control system are excellent. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, smart composite structures have found their way into a wide variety of applications
ranging from ground transportation systems and civil infrastructure to more high technology areas such as
spacecrafts. Smart composite structures featuring integrated sensors and actuators with real-time control
capabilities provide the structural requirements of high strength, lightweight, high structural damping and
low acoustical noise.

Smart structures which have been introduced as an alternative to conventional actively-controlled
structures have several distinct advantages. The distributed nature of sensing in smart structures enables
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accurate sensing of structural response and distributed actuation reduces control spillover problems as-
sociated with point actuators. Electrorheological fluids, optical fibers, polyvinylidene film (PVDF), shape
memory alloys and piezoceramics have been used as sensors and/or actuators in smart systems. Piezoce-
ramic patches are ideally suited for use as sensors and actuators in vibration control because of low cost
and easy implementation. They can be bonded to the surface or embedded within the structure. Crawley
and de Luis (1987) and Lee (1990) developed analytical models for surface bonded and embedded piezo-
electric actuators. The control system design for such distributed multi-sensor multi-actuator system is,
however, more difficult. The conventional vibration control system design requires an explicit and often
accurate identification of these multi-input multi-output (MIMO) systems.

The use of neural networks for vibration control has been investigated by several researchers. Flanders
et al. (1994) used a radial-basis-function network to minimize beam vibration. Boussalis and Wang (1993)
designed a neural network controller based on output feedback to control an antenna-like flexible structure.
Chen (1994) implemented neural networks as state estimators in using the modified independent modal
space control (MIMSC) algorithm for vibration control of a cantilever beam. Smyser and Chandrashek-
hara (1997) used neural networks to emulate an LQG/LTR controller for vibration control of composite
beams.

Robustness of the control algorithm is one of the primary requirements for structural vibration control.
This is because of large variation in structure parameter over the life of its operation and also because of the
fact that identification of system dynamics may not be accurate. In this paper neural network architecture is
designed and trained to achieve the required control action. An excellent account of neural network for
control application can be found in the journal paper by Narendra and Parathasarthi. In the proposed self-
adaptive neuro-control architecture, a feed forward identifier network provides the sensitivity information
required by the dynamic recurrent neural network (DRNN) controller. The identifier neural network is
initially trained offline using data generated by the finite element model, which simulates the vibration
response of the beam. In a practical application of the proposed system, the identifier may be trained online
by connecting it in parallel with the structure. The DRNN controller is trained using a MIMO modification
of the neural network proposed by Ku and Lee (1995). The DRNN controller is trained online and utilizes
the sensitivity information of the structure provided by the identifier for weight updates. Once the identifier
is trained satisfactorily, the updating of the neural identifier continues during the operation of the system.
This accounts for any quasi-static changes in the system dynamics due to structural parameter variations,
structural deterioration, loadings, etc. Vibration damping for composite beam using LQG/LTR based
robust control and LQG/LTR bared neuro-control has been presented earlier by Varadarajan et al. (2000)
and Smyser and Chandrashekhara (1997), respectively. However, both the conventional control and the
neuro-control presented lack the ability to adapt with changing beam dynamics. The recurrent neural
network band scheme presented in this study tries to address this case of varying beam dynamics.

Neural network hardware in the form of programmable chips allows for easy implementation of the
neural networks in a control application (Damle and Rao, 1997). The network memory or weights must
simply be programmed into the neural network chips. The neural network controller developed in the
present work uses the sensor voltages from the piezoelectric sensors and the previous output of the con-
troller as inputs. The neural controller provides the actuator voltages necessary to minimize the beam
vibration. These actuator voltages and the previous sensor voltages constitute the input to the neural
identifier.

The performance of the hybrid control system is examined for different initial conditions and loadings.
Most practical structures are subjected to various aerodynamic and thermodynamic changes which result in
bounded parameter variations in the dynamics of the system. Moreover, the modeling of the system is
seldom perfect. The robustness of the proposed system is examined for various structural parameter
variations. The massively parallel nature of the neural network hybrid controller enables it to overcome
partial failure of the system. In other words, failure or malfunction of a component need not result in a
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total failure of the control system. This is illustrated with test cases involving partial loss of sensing or
actuation.

2. Mathematical formulation

The laminated composite beam with integrated piezoelectric sensors and actuators considered in the
present work is shown in Fig. 1. The beam is of length L, width b and thickness /. The sensors and ac-
tuators can be embedded or surface bonded at different locations along the length of the beam. It is as-
sumed that they span the entire width of the beam. Each actuator can be actuated independently, and
similarly each sensor output is an independent voltage. Each sensor voltage depends only on the location,
the strains, and the piezoelectric material properties.

The beam coordinate axes are shown in Fig. 1. The spatial coordinate x is coincident with the beam axis,
the x—y plane coincides with the mid-plane of the beam and the z-axis is defined normal to the midplane
according to the right-hand rule. The beam is composed of # laminae oriented at an angle 0; (k=1,...,n)
with respect to the beam coordinate axes. A higher-order shear deformation theory is used to incorporate
the pronounced shear deformation effects which arise due to the high ratio of extension modulus to
transverse shear modulus common in laminated composite beams.

2.1. Kinematic relations

The displacement field based on a higher-order shear deformation theory is given by (Smyser and
Chandrashekhara (1997))

ez =utet)+ 2|50 =3 () () + 25 )

usz(x,z, 1) = w(x,t)

(1)

C— Laminated layer
Actuator layer
Sensor layer

Fig. 1. Laminated beam with integrated piezoelectric sensors and actuators.
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where u;, u; denote, respectively, the axial and transverse displacement of a point (x,z) on the beam and
u(x, 1), w(x, t) denote the axial and transverse displacements of a point (x,0) on the mid-plane of the beam,
and ¢, (x,¢) is the normal rotation of a point (x,0) at any instant z.

The strains associated with the above displacement field are

& = &0 + 2kl +2°%2
0, 2.2 (2)
VXZ = ,VXZ + Z KXZ
where
Ou
o0 _ ou
T
) 4 (3¢, Pw
1 _ x. 2 __ 7 E T
T ST ( ox  ox? (3)

ow -4 ow
0 R
P = Ot ox’ =T <¢x * ox >

The transverse strain and transverse normal stress vanish at the top (z = #/2) and bottom (z = —h/2)
surfaces of the beam. This obviates the need for a shear correction factor, which is normally used in the
first-order shear deformation theory.

2.2. Lamina constitutive equations

The equations of motion for a laminated beam accounting for lateral strains is derived by a systematic
reduction of two-dimensional constitutive equations.

The lamina constitutive equations incorporating the piezoelectric effect for the Ath layer with respect to
the laminate (x, y, z) reference axes can be written as (Chandrashekhara and Agarwal, 1993)

{o} = O {e}y — [ {EN, (4)
(D} = lelidede + [E{E}, (5)

where {a} is the stress, [O] is the elastic stiffness matrix, {¢} is the strain and are defined as

On On O 0 O

- T B T B On On O 0 O
{G} = {Uxayfyzfxzfxy} ; {8} = {gxgyyyzyxzyxy} ; [Q] = 0 0 Ou Oss 0
0 O Q45 QSS 0

Q16 Q26 0 O Q66

{E} is the electric field intensity, {D} is the electric displacement vector and [¢] is the permittivity matrix.
The piezoelectric stress coefficient matrix [e] is expressed in terms of the strain coefficient matrix [d], by the
following equation:

[e] = [d][0] (6)

Piezoelectric materials possess anisotropic properties. Piezoceramics are polarized in the thickness di-
rection and exhibit transversely isotropic properties in the x—y plane.

For a one-dimensional laminated composite beam, the width (y-direction) is free of stresses (Bhimaraddi
and Chandrashekhara, 1991). Therefore o, = 1,. = 1,, = 0 while ¢, # 7, # 7,, # 0. Using the above con-
straints in Eq. (5), the constitutive equations can be written as
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{o} = (0], ({z}, — {d},E3) ()

In the unabridged notation, Eq. (7) can be expressed as

{Zi}k - [Qo” QO]<{/ } - {dff }E) (®)

where Q,, and Qs are given by

= 016026 — Q12066 01202 — 02016

O =0n+ <—Q22Q66 ~ o )le + (—Q22Q66 — >Q16 o
>

@55 = 0Oss — —gii

Using the strain displacement relations given by Eq. (2) in Eq. (8) and integrating through the thickness
of the beam, the laminate constitutive equation for the beam can be written as

N, Ay Bun En 0 0 £ N?
M, B\, Dy Fy 0 0 K)lc M?
P. ¢ =|En Fu Hy _0 _0 ’C)Zc —q P (10)
O.: 0 Ass Dss || 0
sz 0 0 0 D55 F55 K)ZCZ 0
where
/2
{Nva)me} :/ O'x(17Z,Z3)dZ
—h/2
h/2
{szasz} = sz(l,Zz)dZ
—h/2
_ _ _ _ _ o n Zf _
{4, B, D, Evi, Fu, Hid ZZ/ 0(1,2,2%,2°,24,2%) dz (11)
k=1 Zk—1
_ _ _ n Zk _
{A557D557F55} = Z / Q55(1722,24)d2
k=1 +Zk-1
n zi
ey =3 [ OB (12,2 8
=1 Yz
and 7 is the number of layers.
The electric field strength E% is given by
Vk
k

where V' is the applied voltage across the kth layer and 4 is the thickness of the kth layer.
Using Eq. (6) in Eq. (5), the sensor equation can be written as

(D} = [d][Q){e}y + [El{EY (13)

Since the z-axis is the poling axis, the charge is collected only in the z-direction, and hence only D% is
considered. The applied electric voltage V5 is zero (and hence E% = 0) for a piezoceramic sensor layer. Using
Eq. (2) in Eq. (13), the expression for D can be written as (Lee, 1990)

D; = {d}; 0]}, (14)
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The charge measured through the electrodes of a sensor patch in the kth layer is given by

( / ngA>“k i ( / ngA>”“] (15)

where R is the effective surface electrode of the patch. The effective surface electrode is the portion of the

patch that is covered by electrodes on both sides. The electric charge generated due to the external me-

chanical disturbance will be detected only if the charge is collected through the effective surface electrode. In

the present study, it is assumed that the entire piezoelectric patch serves as the effective surface electrode.
Substituting Eqgs. (2) and (14) in Eq. (15), the equation for charge can be written as

B
=3

g= / (@O [F){u} da (16)

where [H] is the derivative operator matrix given by

_lde 0 Zdo (2 +72)d,
[H]_lo 0 1+z 2 (17)
and
d=L A tn 2
Ty Zp = \Zk T Zk—1
A= —spE a2 (18)

ow T —4
{u} = {u,w,é—x,(bx} ; zi :ﬁ(z,zc+z,2671)/2

3. Finite-element formulation

Hamilton’s principle is used to derive the equations of motion for the laminated composite beam with
integrated piezoelectric sensors and actuators shown in Fig. 1. Hamilton’s principle states that

b
/ (T —dU +ow)dt =0 (19)
il

where ¢, and #, are two arbitrary time instants, 7 is the kinetic energy, U is the strain energy, W is the work

done by external forces and & denotes the first variation.
The variation in the kinetic energy of the beam can be written as

3T = /L {8i} " [M){i}bdx (20)
where
L 0 0 0
L 0 0

[M] = (1)

o O O
(e

~I5

pllanll

—
S
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- 16 4
I =gl =325
- 16 8
Bmlbrgah =gt (22)
- 16
I =g
and
hy2
(11,13,15717)=p/ (1,2%,2*, 2% dz
—h/2
The variation in strain energy is given by
3U = [ (186)T N} + 81200 + SR b 3
L
where
{N} = {N.M. P} (24a)
and
{e} = {0} (24b)

The virtual work done by external forces is given by

6W:/f6wbdx (25)

where /" = f(x,?) is the uniformly distributed load.
The generalized displacements are interpolated by using expressions of the form

u(e,0) = > w (N, ()

w(x, 1) = Z w; () (x) (26)
b(x,1) = Z ¢ (H)N;(x)

where N; are the linear Lagrange interpolation functions and ; are the Hermite cubic interpolation
functions. The element equations are obtained by substituting Eq. (26) in Eq. (19). The element equation
can be written as

M) {4} + [K]{AY* = {F} + [P Wy (27)

where [M]° is the element mass matrix, [K|° is the element stiffness matrix, {F};, is the element applied-load
vector, [P.]° is the element piezoelectric force vector which maps the applied actuator voltage to induced
displacements, ¥ is the voltage applied to the piezoelectric actuator and {A}* is the vector of nodal dis-
placements.

Using the generalized displacements given by Eq. (26) in Eq. (16), the sensor output equation for the ith
sensor element can be written as
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q: = [S]{4}° (28)

where [S]° is the transformation matrix that transforms the nodal displacements to the measured sensor
charge.

Assembling Eq. (27) and treating each distributed actuator as an independent actuator, the equations of
motion can be written as

MI{A} + [KH{A} = {F}o + [Pl {V }ic (29)

where {4} is a (4n x 1) vector of nodal displacements, {4} is a (4n x 1) vector of nodal accelerations, [M] is
a (4n x 4n) global mass matrix, [K] is a (4n x 4n) global stiffness matrix, {F},, is a (4n x 1) global force
vector, [P is a (4n x P) transformation matrix that transforms the actuator voltage to the actuator force,
{V},. 1s a (P x 1) vector of actuator voltages, n is the number of nodes in the mesh and P is the number of
independent actuators.

In order to include the effects of structural damping, the above equations are modified as follows:

[M]{A} + [CH{A} + K4} = {F}eox + [P {V Y (30)
where [C] is the damping matrix and can be expressed as
[C] = alK] + p[M] (31)

The constants « and f are the damping parameters (Bathe, 1996).
Treating the distributed sensors as independent sensors, the sensor output equations can be written as

{q} = [S|{4} (32)

where {q} is a (y x 1) vector of sensor outputs, [S] is a (y x 4n) transformation matrix that transforms the
nodal displacement to the measured sensor charge, {4} is a (4n x 1) vector of nodal displacements, # is the
number of nodes in the mesh and y is the number of independent piezoelectric sensors.

4. Adaptive neuro-controller design

The adaptive control neuro-architecture consists of two neural networks as shown in Fig. 2, namely the
identifier network (Fig. 4) and the controller network (Fig. 5). Each network is made up of an input layer, a
hidden layer and an output layer. The identifier network is a feed forward neural network while the neuro-
controller is a diagonal recurrent neural network. The inputs to the identifier are the actuator voltages
{V.c(?)} (output of the neuro-controller) and the sensor voltages {¥;(¢ — 1)}. The identifier then outputs the
new predicted sensor voltages {V(¢)}. The inputs to the neuro-controller are sensor voltages {V;(t — 1)}
and actuator voltages {¥,.(t — 1)}. In general, a set of ‘M’ previous available actuator and sensor voltages
are used for identifier network and neuro-controller. The outputs of the neuro-controller are the new ac-
tuator voltages {V,.(¢)}. The number of neurons in the input and output layers of the two neural networks
is determined by the number of sensors and actuators used in controlling the beam.

4.1. Identifier

In practice, the identifier can be connected in parallel with the structure until the desired training is
achieved. The identifier is trained such that V() ~ V(¢), i.., the identifiers predicted sensor voltages match
with the actual beam dynamics. The finite element model is used to generate the requisite data by driving
the actuators with sinusoidal signals having an amplitude of 200 V and frequencies equal to the first two
natural frequencies. Since the output of the plant rather than the identifier is fed back, static back prop-
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Desired Output
Vy(k)
+
/ i
V_ (k) T
_: DRNI\I/C6ntroller ={ Beam / FE Model} Vi(k)
A +
Vg
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| Y, )
l / _
Vac(k'.‘) 1 ) V(k)
z = 7| NN Jdentifier s
V (k-1) g—
Z -

Fig. 2. Block diagram of the hybrid control system.

agation can be used to update the identifier weights. The following is a brief overview of static back
propagation theory.

Back propagation networks are feed forward networks consisting of an input layer, one or more hidden
layers and an output layer (Haykin, 1994). Each neuron in a layer is connected to all neurons in the im-
mediately preceding and following layers. The weights associated with the connections are updated such
that the neural network gives the desired output for the given input. The neural network weights are ini-
tialized to small random values in the range +1 to start the training. The training set consists of input
vectors and corresponding desired output vectors. The values of the inputs and outputs are normalized
between +1. The activity of a neuron is determined as shown in Fig. 3. The total weighted input to a typical
neuron k is

N
netk = ZWkiZ[ (33)
i=1

where z; is the output of the ith neuron in the previous layer, wy; is the weight of the connection between the
ith and kth unit and N is the total number of neurons in the previous layer. The output of the neuron is a
function of the total weighted input. The input and output layers of the identifier use a linear threshold
function, meaning that the output of the neuron is the same as its total weighted input value. Hidden layer
neurons use a bipolar sigmoidal function defined as

2
5 e

(34)

where z; is the output of the jth hidden layer neuron and net; is the total weighted input to the neuron.
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Yi

Fig. 3. Activity of a neuron.

Once the output activity V for all output layer neurons has been determined it can be compared to the
expected output V;; for training purposes. The total error of the network is defined as

B3y (Fam e =33 dk R

k=1

where N, is the number of neurons in the output layer which is equal to the number of sensors and,
dok = (Vg — Vi ). The training continues until the error is within acceptable limits. The weights of the kth
output layer for a network with N, output nodes and N, hidden layer nodes is adjusted as follows:

WZ/(t + 1) = WZ/’(t) + 7’150ij (36)

where k =1,...,N,, j=1,..., N, n is the learning rate which is generally between 0.01 and 1, and z; is the
output of the jth neuron of the hidden layer. Similarly, the weights for the jth hidden layer for a network
with M, hidden layer nodes and »; input nodes is updated using

vi(t + 1) = vi(t) + nf] (net;) Zéokwk, (37)

where j=1,...,N, and i = 1,...,N;. The schematic of the NN identifier is given in Fig. 4.
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Vo, (k-1) gl v, (k)
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— V-s2
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Voo (K) e Y, (k)

Fig. 4. Schematic of neural network identifier.

4.2. Diagonal recurrent neural network controller

The DRNN is shown in Fig. 5. Let M;, M;,, M, be the number of neurons in the input, hidden and output
layers, respectively. Then the mathematical model for the DRNN is defined as (Ku and Lu, 1995; Narendra
and Parthasarathy, 1990)

Vi) = Ou0) = S WY, (0); - Y,(0) = f(net, (1))
’ (38)

net;(t) = W Y;(t — 1)+ Y Vuli(t
i=1

where for each time instant ¢, ;(¢) is the ith input to the DRNN, net;(¢) is the sum of inputs to the jth
recurrent neuron, ¥;(¢) is the output of the jth recurrent neuron, and O,(¢) = ¥, (¢) is the output of the kth
output neuron which is the same as the kth actuator input. Here f'(-) is the bipolar sigmoid function, and
Vi, W and W,; are input, recurrent, and output weights, respectively.

The error function for the DRNN controller is defined as

E, 22 (Van(6) = Von(0))’ (39)

where Vj,,(¢) and V,(¢) are the desired and actual responses of the structure and y is the number of sensor
outputs from the structure. The controller weights are updated according to

We(t+1) = We(1) +n<ngE) (40)

where W° represent W, WjR or Vj;
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Vaci(k-1)

Fig. 5. DRNN controller.

O, c (1) < N OV (1) Vi, (2)
= - em I = - em (¢ : 41
ae ~ ~ 2l e = = | D57y o w
where e, = (Vam(t) — Ven(t)) and 0V, (¢)/0V,, (¢) is the sensitivity of the mth output of the structure (mth
sensor voltage) with respect to the kth input (actuator voltage). Since the system dynamics are usually
unknown, the sensitivity is unknown. However, this can be estimated using the neural identifier. After
the identifier is sufficiently trained, the dynamic behavior of the identifier is close to that of the structure,

i.e., Vou = Vg, where ¥V, is the output of the identifier. Hence we assume the sensitivity can be approxi-
mated as

Vlt) _ OTunlt)
Ve (1)~ OV (1) 42)

Applying the chain rule to Eq. (41) and using Eq. (42), gives for the configuration used
OF,

wy = Zo €cm (Z; vm,f'(netl(f))wk;> Y, )

m=1
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X (Z (2 vmzf'(netz(f))wkt) %—P,-u)) (44)

aEC Mo No Ni )

o, =- 2::1 €cm (; (; Omtf (netl(t))wk1> ijQijU)) (45)
where

Pi(t) = f'(net;(0))[Y;(t — 1) + WRPi(t = 1)]; P;(0) =0 (46)

0y(t) = f'(net; () [Li(1) + WRQy(t = 1)]; - 0;;(0) =0 (47)

5. Results and discussion

The NN identifier was trained offline using 3000 input-output pairs generated using the finite element
model. Sinusoidal actuator voltages of amplitude 200 V and frequencies equal to the first two modal fre-
quencies were used for the generation of training data. The identifier was trained until the normalized
mean-square error was below 0.01. Once the identifier was trained to within acceptable limits the hybrid

Table 1
Material and geometric data
T300/5208 graphite/epoxy PKI 502 (sensor) PKI 404 (actuator)

E, (GPa) 174.8 71.0 80.0

E, (GPa) 10.3 71.0 80.0

G, (GPa) 7.17 28.4 32.0

Gi3 (GPa) 7.17 28.4 32.0

G»; (GPa) 6.21 28.4 32.0

v12 0.25 0.25 0.25

p (kg/m®) 1389.23 7600.0 7500.0

dy (m/V) - —175 x 10712 —150 x 10712

dy (m/V) - —175 x 10712 —150 x 10712

Length (m) 1.0 0.1 0.1

Width (m) 0.0254 0.0254 0.0254

Thickness (m) 0.0127 0.0002 0.0002

zZ
\ B sensor
y N Actuator
Z|
X
| | | | | ]
==

Fig. 6. Layout of the beam showing element discretization and collocated sensor and actuator locations.
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Fig. 7. Hybrid controller performance as learning progresses.

system was assembled. The training of the identifier is however continued during the subsequent test runs.
The DRNN controller is initialized to random weights between 0 & 0.01. Approximately 10 arbitrary si-
nusoidal excitations were given to the structure to learn the DRNN controller weights. Subsequently, the

test simulations were carried out.
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Fig. 8. Controller performance for different excitations.

The performance of the hybrid control system was tested for various initial conditions and loadings. The
properties of the smart composite beam are given in Table 1. The beam is discretized into 10 finite elements.
Two independent collocated sensors and actuators are located as shown in Fig. 6. As a result the controller



7872 M.T. Valoor et al. | International Journal of Solids and Structures 38 (2001) 7857-7874

and the identifier have two output neurons each. The identifier network is trained with 20 hidden layers
while the controller network is trained with 10 hidden layers. The sensors are bonded to the top and bottom
surfaces of the beam, and the actuators are bonded on top of the sensors. The two collocated actuator
layers are polarized in opposite directions in order to generate only bending moments. For all cases a four-
layer [0°/90°/90°/0°] beam with clamped-free boundary conditions is considered. The origin in Fig. 6 cor-
responds to the clamped end. The controller and identifier networks are updated during each test run.
Hence each test run utilizes the updated networks obtained from the previous run unless otherwise men-
tioned.

Fig. 7(a) shows the controller performance for a mode 1 initial condition. It can be seen that the per-
formance improves as the training of the controller progresses. Fig. 7(b) shows the corresponding actuator
voltages at each stage of the training. Fig. 8(a) and (b) show the controller performance for a mode 2 initial
condition and a uniform distributed impulsive load of 20,000 N/m? acting for 0.001 s, respectively. Here
again the controller is successful in damping out the vibrations.

The robustness of the proposed system is examined for various system parameter variations. The beam is
excited by an initial condition corresponding to the first mode of vibration of the original system for all of
the cases considered in the parameter variation study. The results are shown in Fig. 9. Fig. 9(a) shows the
free vibration response for the cases considered. For the increased frequency case E; = 204.9 GPa and
p = 1189.23 kg/m? while the other parameters are unchanged from the original system. For the decreased
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Fig. 9. Robustness study — effect of structural parameter variation.
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frequency case E; = 154.9 GPa and p = 1589.23 kg/m?. In the third case a tip mass of 0.075 kg is used. In
all cases it can be seen that the NN-controller is successful in damping out the vibration. Moreover, the
settling time for all the cases is close to the nominal case which shows the robustness of the controller. Fig.
9(c) shows the case of free-vibration damping with sinusoidal initial condition and a tip mass of 0.5 kg.
Sinusoidal initial condition is taken proportional to sin(nx//) so that it excites almost all modes of vi-
brations. First and second modes of vibration are clearly visible in free span-loop vibration. Both the modes
are successfully damped by the recurrent neuro-controller.

Next, the robustness was studied for loss of sensing or actuation. Fig. 10(a) shows the free and NN-
controlled responses for a mode 1 initial condition with sensor 2 offline. Sensor 2 corresponds to the one on
the third element from the clamped end. Fig. 10(b) shows the response with actuator 2 disabled. Actuator 2
again corresponds to the third element from the clamped end. The degradation in performance with partial
sensor feedback is negligible. As expected the deterioration in performance is more marked when the
actuator 1 is taken offline. However, even in this case the performance of the neuro-control system is
satisfactory. Fig. 10(c) shows the case where actuator 1 and sensor 2 are off line. Thus the beam simulates a
non-collocated actuator and sensor scenario. Even in this case the performance of the controller is satis-
factory.
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Fig. 10. Robustness study — effect of partial loss of sensor output or actuation.
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6. Conclusions

Vibration control of smart composite beams using a self-adaptive neural-controller was studied. A finite
element model based on a higher-order shear deformation theory was developed to simulate the vibration
of the composite beam. The neural network identifier was trained offline using data generated by the finite
element model. The DRNN controller was trained online while the identifier itself learns quasi-static
changes in system dynamics. Simulations were carried out to study the performance and robustness of the
neural-control system for different initial conditions, structural parameter variations and loss of sensing or
actuation. The recurrent control architecture was shown to perform effectively and robustly in all the cases
studied.
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